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Slide lines (2D) and surfaces (3D) are a way to treat interfaces in Lagrangian hydrocodes that allow different materials or
regions to move relative to each other without the grid distortion that would otherwise terminate these calculations quickly.
The Lagrangian frame is natural for Newton’s second law of motion, and also for the calculation of the stress deviators of
material models. It is not suitable for the computation of fluid instabilities. However, computer codes based in the Lagrang-
ian frame were the first to be developed and the idea of introducing slide lines to avoid premature grid tangling between
regions without significant internal vorticity is very old [1]. All slide line treatments have followed this original work of Wil-
kins, in spirit if not quite in detail, and we herein do the same. Unfortunately slide lines tend to be a very ad-hoc device with-
out a firm theoretical foundation. It is the purpose of this note to clarify the meaning of this construction and to provide a
new and more logically cogent implementation.

Slide line treatments consist of two steps: the first is the calculation of forces that act normal to it, but with tangential
forces that are discontinuous and thus lead to a discontinuous tangential velocity; however, a discontinuous normal velocity
also develops – the so-called ‘‘interpenetration” problem. This latter difficulty is fixed by the ‘‘put-back-on” step where one
declares one side to be the ‘‘master” whose positions and velocities are unchanged after the solution of the force equation,
and the other as the ‘‘slave” whose point positions and normal velocities are made to conform to those of the master. This
latter step is not well justified and often leads to unnecessarily complicated interpolations and generally nonrobust and
‘‘cludgy” constructs. We begin by briefly deriving the force decomposition step in a simple manner; then, while keeping
the master–slave distinction we show how the interpenetration problem is resolved as a proper velocity boundary condition.
Finally, total energy balance is considered and a ‘‘goodness” criterion for the overall slide line procedure is derived; numer-
ical results are given. What is shown is that slide lines (in 2D or 3D) should be thought of as a special type of velocity bound-
ary condition constructed with respect to a curved surface – the so-called ‘‘master” side. However, this master surface is no
longer fixed in space as is a solid or reflective boundary. It is also shown how the put-back-on step is related to this new
construct and why it has still been useful for so long.
. All rights reserved.
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We begin with Newton’s second law for fluid elements (as opposed to mass points) expressed as:
Fig. 1.
are sho
Mp
d~vp

dt
¼~Fp; ð0:1Þ
where Mp is the mass associated with a point ‘‘p”, its velocity is ~vp, and the total force ~Fp acts on it from the surrounding
zones ‘‘z” due to the stress in these zones; the convective form of the time derivative denotes the Lagrangian frame of ref-
erence. We utilize a staggered-spatial-grid with zonal masses Mz and stresses defined in zones, and with point positions,
velocities, and masses [2]. This interleaving of spatial variables avoids the well known grid-decoupling, or odd-even, insta-
bility that occurs with Lagrangian point-centered schemes even in 1D, and also leads to a very simple way to calculate the
force ~Fp acting on a given point from its neighboring zones in multi-dimensions.

The force decomposition step begins by formally dividing Eq. (0.1) for a single point ‘‘p” into upper ‘‘u” and lower ‘‘l” por-
tions as
Ml;p
d~vp

dt
¼~Fl;p þ~gl;p; Mu;p

d~vp

dt
¼~Fu;p þ~gu;p; ð0:2Þ
where the ~g’s are the respective contact forces. In order for the above two equations to sum to Eq. (0.1) we require
Mp ¼ Ml;p þMu;p, ~Fp ¼~Fl;p þ~Fu;p, and ~gl;p ¼ �~gu;p. That their acceleration be equal to that of the undivided momentum equa-
tion yields
~gl;p ¼ �~gu;p ¼
Ml;p

~Fu;p �Mu;p
~Fl;p

ðMl;p þMu;pÞ
: ð0:3Þ
Note about this decomposition: momentum is conserved and the work performed by the net contact forces is zero; this is
thus also true in any direction ĉ. The slide approximation is obtained by first defining unit vectors ĉu;p and ĉl;p at all points ‘‘p”
of a slide line. Here ĉp is defined by summing the outward grid vectors adjacent to each point on its respective side and divid-
ing by their magnitude. (For problems involving a special symmetry other choices are possible; for instance, fitting a circle
through a point and its two neighbors in 2D or spheres in 3D.) One then lets~gl;p ! ð~gl;p � ĉl;pÞĉl;p in the first part of Eq. (0.2) and
likewise (‘‘l” goes to ‘‘u”) in the second part. (We hereon favor writing formulas for the ‘‘l” side; ‘‘u” side formulas are ob-
tained simply by switching both ‘‘l” and ‘‘u”.) If Eqs. (0.2) is written normal and tangential to the respective ĉp directions
one obtains the original form of the Wilkins [1] slide line force model that is commonly cited. We prefer the above form since
the contact forces ~gp have physical significance; this also makes keeping track of the total work tally trivial.

The construction of the normal contact force for the case where points on either side of the slide line are no longer coin-
cident, as depicted in Fig. 1, is as follows: for the lower side, ~gl;p, all upper side variables are rescaled by the factor al;p=au;p0 ,
where the a’s are the magnitudes of the area vectors used to construct the respective ĉ’s, and where p0 denotes the point on
the upper side that is nearest to point ‘‘p” on the lower side. Since we are only interested in the force normal to the slide line
we perform a rotation of this normal component simply by letting~Fu;p0 � ĉl;p ! �~Fu;p0 � ĉu;p0 . (Wilkins rotates the total stress on
the upper side and then projects in the ĉl;p direction; the above is equivalent but much easier to implement! The minus sign
occurs because the ĉ’s are defined as respective outward normals.) The final result is
~gl;p ! ð~gl;p � ĉl;pÞĉl;p ¼ �
ðMl;p

~Fu;p0 � ĉu;p0 þMu;p0
~Fl;p � ĉl;pÞal;pĉl;p

ðal;pMu;p0 þ au;p0Ml;pÞ
; ð0:4Þ
which is what is coded.
If velocity is advanced in time along a slide line using the contact forces Eq. (0.4) between the two sides interpenetration

of points from one side into the other side will occur. This is a purely kinematical difficulty that is unrelated to the force
decomposition step as can be seen from the following thought problem: suppose a slide line in the ‘‘y” direction has points
with velocity vxðy; tnÞ that is continuous at time tn, then because of the ‘‘y” dependence of vx, on the next timestep tnþ1 for
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any amount of slide velocity vy, vxðy; tnþ1Þ will be discontinuous and interpenetration will occur. To prevent this requires
additional forces that augment the contact forces. These forces of constraint are like those implicitly specified at a reflective
boundary with a fixed normal ĉ, and where the boundary condition applied after the velocity advance is simply
~vnþ1

p ! ~vnþ1
p � ð~vnþ1

p � ĉÞĉ; this operation implies forces of constraint that are never calculated, and for a fixed boundary do
no work. But tangential motion due to forces along the fixed boundary occur as with slide lines.

What is seen is that the boundary conditions applied to Eq. (0.1) are simply forces that can be specified in at most two
ways: directly as with the contact force terms, or indirectly by specifying a component of the updated velocity. This com-
pletes a part of the right or left hand side of Eq. (0.1). If one gives the total point velocity as a function of time (as at the
boundary of a driving piston) then any external force specification is simply nullified. But if only a component of the velocity
is specified then a force component can complement it; this is the slide line case. One can specify~rðtÞ at a boundary only if it
can be differentiated to obtain a ~vðtÞ. Since ~v ¼ d~r=dt, the initial condition~rðt ¼ 0Þ over the initial spatial domain is all that is
needed. This is why the usual put-back-on step cannot be viewed as a boundary condition. It can be viewed as a ‘‘reinitial-
ization” of variables along the slide line on every timestep. These variables are then not generally dynamically connected.

The solution to the interpenetration problem as a velocity boundary condition that augments the contact force is found
from the following thought problem: suppose we have a situation along a slide line where no slide occurs. This can happen
because we use Eq. (0.3) in the force Eq. (0.2), or because there are no gradients along the slide line direction, and with zero
initial velocity the contact forces only cause motion in the normal ‘‘x” direction. Then whatever velocity boundary condition
is applied it must be null to this motion that by itself is correct. If we consider the ‘‘u” side as the ‘‘master” and the ‘‘l” side as
the ‘‘slave” we must require that the displacement in the normal direction of the ‘‘l” side equal that of the master (and thus
unchanged) ‘‘u” side. This gives
ðD~rl;p � ĉu;p0 Þĉu;p0 ¼ ðD~ryu;p0 � ĉu;p0 Þĉu;p0 : ð0:5Þ
In this equation D~ryu;p0 � ð~v
nþ1y
u;p0 þ~vn

u;p0 ÞDt=2 and D~rl;p � ð~vnþ1
l;p þ~vn

l;pÞDt=2 where the superscript ‘‘y” denotes a velocity that re-
sults from the advance in time of the force equation with contact forces included, and ~vnþ1

l;p is the final advanced velocity of
points on the slave side. Thus in terms of velocity only we modify ~vnþ1y

l;p by subtracting off its component in the ĉu;p0 direction
and adding the new component in this direction obtained from Eq. (0.5), resulting in
~vnþ1
l;p ¼ ~v

nþ1y
l;p þ ~vnþ1y

u;p0 þ~vn
u;p0

� �
� ĉu;p0

h i
ĉu;p0 � ~vnþ1y

l;p þ~vn
l;p

� �
� ĉu;p0

h i
ĉu;p0 ; ð0:6Þ
where ~vnþ1
u;p ¼ ~v

nþ1y
u;p and is unchanged. The velocity constraint given by Eq. (0.6) is null to our thought problem (a useful code

check) but prevents interpenetration in the presence of a slide velocity by slaving the ‘‘l” side to the ‘‘u” side. It is also the
unique solution to this problem, the only arbitrariness is the interpretation of the point ‘‘p0” on the ‘‘u” side. We use the near-
est neighbor point displacement in the above and in Eq. (0.4) since this is simple and makes computer issues such as ‘‘par-
allelization” trivial. Higher order interpolation may be needed particularly if special symmetries are involved (spinning disks
for instance), but this can become complicated especially in 3D. The solution is also less sensitive to velocity, as opposed to
~rðtÞ, interpolation since velocity is the derivative of the latter. Note that for points on the ‘‘u” side of a fixed boundary
(~vu;p0 ¼ 0) Eq. (0.6) yields two limits: for ~vn

l;p ¼ 0 the standard reflective boundary condition, and otherwise an elastic colli-
sion—both are physical. This equation thus allows the physics of the problem to decide what type of interaction/collision
takes place. It is important to note that what has been done is to match normal displacements on each timestep rather than
normal coordinates as is done in the put-back-on step. This is only a somewhat weaker constraint, so if one also matches the
normal velocities then the dynamical mismatch noted earlier is minimized, which is why this ‘‘device” used for so long can
give respectable results.

A common criticism of the master–slave procedure is that it introduces biasing into the results when this distinction be-
comes blurred. In the past this has sometimes been corrected by alternating the master and slave sides on every other time-
step. This can be mimicked here by using Eq. (0.6) with its equivalent form for the upper side together on every timestep but
multiplying one-half times the correction terms in brackets. How well this works and how these factors might be modified
depending on the problem at hand is a question for future study.

Although our discussion so far applies to any Lagrangian scheme, for considerations of energy balance it is necessary to
cast this in terms of the compatible form where energy is conserved to roundoff error [2]. Here the equation for specific
internal energy ‘‘ez” defined in zones ‘‘z” has the generic form
Mzðenþ1
z � en

z Þ ¼ �
X

p

~f z
p � D~rp; ð0:7Þ
where Mp and Mz are given as sums over corner masses mp
z ¼ mz

p, and~Fp ¼
P

z
~f p

z , etc. (See [2] for a detailed discussion.) The
corner force~f p

z ¼~f z
p is the principal object. It can be constructed using finite volume or element [3] methods; with the latter

the element support basis must not be too large so that ez is still locally defined in every zone.
Using the force equation we can define the slide work done on a timestep ðnþ 1; nÞ upon a point ‘‘p” of a slide line ‘‘sl” as

DWnþ1;n
p;sl , and given by
DWnþ1;n
p;sl ¼ Mp½ð~vnþ1

p Þ2 � ð~vn
pÞ

2�=2�
X

z

~f p
z � D~rp; ð0:8Þ
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where
P

z is over zones of the side containing point ‘‘p”. Then defining Kn �
P

pMpð~vn
pÞ

2=2 and In �
P

zMzen
z over all points

and zones, and using Eq. (0.7) we have
Fig. 2.
horizon
Knþ1 þ Inþ1 � Kn � In ¼
X
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~f p
z � D~rp �

X
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X
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~f z
p � D~rp þ

X
p

DWnþ1;n
p;sl ; ð0:9Þ
where for zero work over exterior (non-slide line) boundaries the double sums exactly cancel allowing us to sum this result
in time to obtain
Kn þ In ¼ Kn¼0 þ In¼0 þ
Xn�1

i¼1

Wi;sl; ð0:10Þ
where Wi;sl �
P

pDWiþ1;i
p;sl . This equation represents energy balance satisfied to roundoff error as in [2]. Given this exact energy

tally it makes sense to define a slide line residual error Rn
sl at time level ‘‘n” as
Rn
sl �Wn

sl=ðK
n þ InÞ; ð0:11Þ
where Wn
sl �

Pn
i¼1Wi;sl. This is a space and time integrated error along slide line ‘‘sl” since in the absence of friction forces a

slide line should ideally result in no net work. (Friction forces are model dependent and not discussed here.)
We next briefly summarize results of numerical tests of the above slide model. A problem with 100 by 50 square zones on

a unit domain in the horizontal ‘‘y” direction and a half unit domain in the vertical ‘‘x” direction is considered. At the initial
time t ¼ 0 all velocities are zero; the lower ‘‘x” half of this domain has unit density, the upper half density is ten; the specific
internal energy ez is zero except in the first five vertical layers of zones in the lower half where ez ¼ 30:0; this sends a shock
wave to the left. We utilize reflective boundary conditions about the entire domain and a c ¼ 5=3 ideal gas law equation of
state. Subzone anti-hourglass forces with a merit factor of 1:0 are employed [2]. A slide line is introduced between the high
and low density regions. We use Eqs. (0.4) and (0.6) along this slide line. (In all calculations the master side is always the
higher density region.) If Eq. (0.6) is not included interpenetration of the lighter density region into the higher density
one occurs very quickly.

Results using the complete slide line model are shown in Fig. 2 with the grid and velocity vectors of the top and bottom
domains at time t ¼ 0:3. (These regions are shown separately since they are cut from a single logically connected grid that
has spurious grid lines wrt the initially collapsed line of zones.) It is seen that the set of five zones that contained all of the
internal energy initially have expanded by about a factor of � 6. No interpenetration of the lower into the upper one has
occured. (False interpenetration due to insufficient resolution of the initial high energy region will occur!) In Fig. 3 is shown
the density at the same time in the upper and lower regions. While this problem has no known solution the maximum den-
sity for a strong shock wave with c ¼ 5=3 is four times the initial, and this is seen to obtain. At this time Rn

sl ¼ :0025 and re-
mains at about this value with time. (This is about what one expects for global energy conservation when compatible
Lagrangian hydro is not used on problems of this size without slide lines.) This problem is run to t ¼ 0:9 after which the time-
step decays greatly; multiple reflections have occured but termination is not due to slide line difficulties and no discernable
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interpenetration is visible. Endurance is a lot of what constitutes a good slide line treatment. In this regard we have also run
Raleigh–Taylor (R–T) instability problems with a slide line between the upper ‘‘heavy” and lower ‘‘light” regions. (One ini-
tializes with hydrostatic pressure balance and just perturbs the slide line/interface by a sine wave with amplitude of a small
fraction of a grid spacing – 0:1 or so, and with anti-hourglass forces using a merit factor of 0.2.) While correct answers are not
obtained after the linear regime this provides an endurance test where the sine wave slide velocity vy is small compared to
vx that is normal to the interface, and where very large deformation occurs without any noticeable interpenetration. Slide
lines completely rule out the possibility of Kelvin–Helmholtz instability that induces vorticity and would terminate these
calculations. The ‘‘spikes” of R–T instability grow too rapidly and the ‘‘mushrooms” do not develop. Lagrangian calculations
can thus fail due to grid tangling from vorticity, or they can just wipe out physical vorticity (sometimes due to anti-hourglass
pressure forces) and give incorrect answers, although in the latter case some overall features and spatially integrated quan-
tities may still be substantially correct! Anti-hourglass forces are essential to the quality of these calculations. Slide lines are
sensitive to hourglass motion and one must be careful that corrections to counter this do not result in ‘‘false propagation”
ahead of a shock wave.

Slide lines are most often employed when material models are used but are actually more difficult for the pure fluid prob-
lems just discussed since fluids always tend to intermix due to instability, and for cold regions the velocity dependent arti-
ficial viscosity force is all important. These forces are correct only for dynamically consistent evolving fluid states. Finally we
wish to note that more complicated slide line setups, or 3D surfaces, can be readily accommodated by our new model. (The
former includes ‘‘T-junctions” where two slide lines meet at a T-like intersection; here the two points at the end of the stem
slide line can be held together by use of Eq. (0.3) and form one point that slides wrt the other intersected, top of the ‘‘T”, slide
line.)

While the discussion of boundary conditions that are proper to Newton’s second law as applied to fluid elements is cen-
tral to this work, we wish to note that for the staggered-spatial-grid Lagrangian model this turns out to be rather simple. (It is
important to note that Eq. (0.7) requires no boundary data and is only an ODE.) Thus it appears that this Lagrangian form of
the equations of fluid dynamics is more diagonal in a matrix sense than the point-centered one where boundary conditions
are generally expressed in terms of the ‘‘method of characteristics”, and are quite complicated even in 1D [4]. It is not clear
how to connect these two descriptions, so this may result in further clarifications of this subject. (The distinction between
sub and supersonic flow does not appear here even though the Lagrangian frame follows the v characteristic.)

In summary, the implementation of our slide line model consists of adding Eq. (0.4) to the rhs of the force Eq. (0.2) for all
points on each side of a slide line; all velocities are then advanced in time after which Eq. (0.6) is applied to all slave slide line
points. Next, other possible boundary conditions are applied to the edges of the computational domain. After this coordi-
nates are advanced in time and Eq. (0.7) is updated along with auxiliary quantities such as grid vectors, volumes, and ĉ terms.
The above is performed twice within an overall predictor–corrector time advance [2]. At the end of each timestep the nearest
neighbor list for points on a slide line is updated.
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